Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            While planets are commonly discovered around main-sequence stars, the processes leading to their formation are still far from being understood. Current planet population synthesis models, which aim to describe the planet formation process from the protoplanetary disk phase to the time exoplanets are observed, rely on prescriptions for the underlying properties of protoplanetary disks where planets form and evolve. The recent development in measuring disk masses and disk-star interaction properties, i.e., mass accretion rates, in large samples of young stellar objects demand a more careful comparison between the models and the data. We performed an initial critical assessment of the assumptions made by planet synthesis population models by looking at the relation between mass accretion rates and disk masses in the models and in the currently available data. We find that the currently used disk models predict mass accretion rate in line with what is measured, but with a much lower spread of values than observed. This difference is mainly because the models have a smaller spread of viscous timescales than what is needed to reproduce the observations. We also find an overabundance of weakly accreting disks in the models where giant planets have formed with respect to observations of typical disks. We suggest that either fewer giant planets have formed in reality or that the prescription for planet accretion predicts accretion on the planets that is too high. Finally, the comparison of the properties of transition disks with large cavities confirms that in many of these objects the observed accretion rates are higher than those predicted by the models. On the other hand, PDS70, a transition disk with two detected giant planets in the cavity, shows mass accretion rates well in line with model predictions.more » « less
- 
            Context. TOI-732 is an M dwarf hosting two transiting planets that are located on the two opposite sides of the radius valley. Inferring a reliable demographics for this type of systems is key to understanding their formation and evolution mechanisms. Aims. By doubling the number of available space-based observations and increasing the number of radial velocity (RV) measurements, we aim at refining the parameters of TOI-732 b and c. We also use the results to study the slope of the radius valley and the density valley for a well-characterised sample of M-dwarf exoplanets. Methods. We performed a global Markov chain Monte Carlo analysis by jointly modelling ground-based light curves and CHEOPS and TESS observations, along with RV time series both taken from the literature and obtained with the MAROON-X spectrograph. The slopes of the M-dwarf valleys were quantified via a support vector machine (SVM) procedure. Results. TOI-732b is an ultrashort-period planet (P= 0.76837931-0.00000042+0.0000039days) with a radiusRb= 1.325-0.058+0.057R⊕, a massMb= 2.46 ± 0.19M⊕, and thus a mean densityρb= 5.8-0.8+1.0g cm-3, while the outer planet atP= 12.252284 ± 0.000013 days hasRc= 2.39-0.11+0.10R⊕,Mc= 8.04-0.48+0.50M⊕, and thusρc= 3.24-0.43+0.55g cm-3. Even with respect to the most recently reported values, this work yields uncertainties on the transit depths and on the RV semi-amplitudes that are smaller up to a factor of ~1.6 and ~2.4 for TOI-732 b and c, respectively. Our calculations for the interior structure and the location of the planets in the mass-radius diagram lead us to classify TOI-732 b as a super-Earth and TOI-732 c as a mini-Neptune. Following the SVM approach, we quantified d logRp,valley/ d logP= -0.065-0.013+0.024, which is flatter than for Sun-like stars. In line with former analyses, we note that the radius valley for M-dwarf planets is more densely populated, and we further quantify the slope of the density valley as d log ρ^valley/ d logP= -0.02-0.04+0.12. Conclusions. Compared to FGK stars, the weaker dependence of the position of the radius valley on the orbital period might indicate that the formation shapes the radius valley around M dwarfs more strongly than the evolution mechanisms.more » « less
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Context.Since 2019, GRAVITY has provided direct observations of giant planets and brown dwarfs at separations of down to 95 mas from the host star. Some of these observations have provided the first direct confirmation of companions previously detected by indirect techniques (astrometry and radial velocities). Aims.We want to improve the observing strategy and data reduction in order to lower the inner working angle of GRAVITY in dual-field on-axis mode. We also want to determine the current limitations of the instrument when observing faint companions with separations in the 30–150 mas range. Methods.To improve the inner working angle, we propose a fiber off-pointing strategy during the observations to maximize the ratio of companion-light-to-star-light coupling in the science fiber. We also tested a lower-order model for speckles to decouple the companion light from the star light. We then evaluated the detection limits of GRAVITY using planet injection and retrieval in representative archival data. We compare our results to theoretical expectations. Results.We validate our observing and data-reduction strategy with on-sky observations; first in the context of brown dwarf follow-up on the auxiliary telescopes with HD 984 B, and second with the first confirmation of a substellar candidate around the starGaiaDR3 2728129004119806464. With synthetic companion injection, we demonstrate that the instrument can detect companions down to a contrast of 8 × 10−4(ΔΚ= 7.7 mag) at a separation of 35 mas, and a contrast of 3 × 10−5(ΔΚ= 11 mag) at 100 mas from a bright primary (K< 6.5), for 30 min exposure time. Conclusions.With its inner working angle and astrometric precision, GRAVITY has a unique reach in direct observation parameter space. This study demonstrates the promising synergies between GRAVITY andGaiafor the confirmation and characterization of substellar companions.more » « less
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            The ALICE Collaboration reports measurements of the large relative transverse momentum ( ) component of jet substructure in and Pb-Pb collisions at center-of-mass energy per nucleon pair . Enhancement in the yield of such large- emissions in head-on Pb-Pb collisions is predicted to arise from partonic scattering with quasiparticles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti- algorithm with resolution parameter in the transverse-momentum interval . The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb-Pb and collisions shows medium-induced narrowing, corresponding to yield suppression of high- splittings, in contrast to the expectation of yield enhancement due to quasiparticle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions (“jet quenching”), both with and without quasiparticle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract This paper presents a study of the inclusive forward J/ψyield as a function of forward charged-particle multiplicity in pp collisions at$$ \sqrt{s} $$ = 13 TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relativeJ/ψyields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range |η|<1. The J/ψmesons are reconstructed via their decay intoμ+μ−pairs in the forward rapidity region (2.5< y <4). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the J/ψrapidity region. The results show a steeper-than-linear increase of the J/ψyields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract Event-by-event fluctuations of the event-wise mean transverse momentum,$$\langle p_{\textrm{T}}\rangle $$ , of charged particles produced in proton–proton (pp) collisions at$$\sqrt{s}$$ = 5.02 TeV, Xe–Xe collisions at$$\sqrt{s_{\textrm{NN}}}$$ = 5.44 TeV, and Pb–Pb collisions at$$\sqrt{s_{\textrm{NN}}}$$ = 5.02 TeV are studied using the ALICE detector based on the integral correlator$$\langle \!\langle \Delta p_\textrm{T}\Delta p_\textrm{T}\rangle \!\rangle $$ . The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe–Xe and Pb–Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe–Xe and Pb–Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity,$$S_0$$ , of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            A<sc>bstract</sc> We report on the measurement of inclusive, non-prompt, and prompt J/ψ-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (|y| <0.9) in the transverse momentum rangespT<40 GeV/cfor the J/ψand 0.15< pT<10 GeV/cand |η|<0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities ofLint= 34 nb−1andLint= 6.9 pb−1, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy ofE= 4 and 9 GeV in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities ofLint= 0.9 pb−1andLint= 8.4 pb−1, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/ψtrigger are presented as a function of the J/ψand associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
